
1

Finite State Recognizers and
Sequence Detectors

ECE 152A – Fall 2006

November 9, 2006 ECE 152A - Digital Design Principles 2

Reading Assignment

Brown and Vranesic
8 Synchronous Sequential Circuits

8.4 Design of Finite State Machines Using CAD Tools
8.4.1 Verilog Code for Moore-Type FSMs
8.4.2 Synthesis of Verilog Code
8.4.3 Simulating and Testing the Circuit
8.4.4 Alternative Styles of Verilog Code
8.4.5 Specifying the State Assignment in Verilog Code
8.4.7 Specification of Mealy FSMs Using Verilog

2

November 9, 2006 ECE 152A - Digital Design Principles 3

Reading Assignment

Roth
14 Derivation of State Graphs and Tables

14.1 Design of a Sequence Detector
14.2 More Complex Design Problems
14.2 Guidelines for Construction of State Graphs

November 9, 2006 ECE 152A - Digital Design Principles 4

Mealy and Moore Machines

Mealy Machine
Output is a function of present state and present
input

Outputs valid on clock edge (transition)

Simpler (possibly)
Faster (possibly)
Outputs “glitch”
Used for synchronous (clocked) designs

3

November 9, 2006 ECE 152A - Digital Design Principles 5

Mealy and Moore Machines

Moore Machine
Output is a function of present state only

Outputs valid after state transition

More “stable” than Mealy machine
Outputs do not glitch

Asynchronous (no clock) or synchronous designs

November 9, 2006 ECE 152A - Digital Design Principles 6

Deterministic Recognizers

State Diagram
Also referred to as Deterministic Transition Graph
Next state transition is determined uniquely by
present state and present input

Deterministic Recognizer
Classifies input strings into two classes:

Those it accepts
Those it rejects

4

November 9, 2006 ECE 152A - Digital Design Principles 7

Deterministic Recognizers

Sequential Lock Analogy
Accepted string corresponds to of the combination
of the lock

Accepted string opens the lock
Rejected string leaves the lock closed

Provides a basis for general purpose, finite
state machine (FSM) design

Controllers, peripheral interfaces, etc.

November 9, 2006 ECE 152A - Digital Design Principles 8

Deterministic Recognizers

Definition of states
Starting (or initial) state must be defined
The states whose assigned output is 1 are
referred to as accepting (or terminal) states
The states whose assigned output is 0 are called
rejecting (or nonterminal) states

Above definition of states and control implies
a Moore finite-state machine

With the requirement of a defined initial state

5

November 9, 2006 ECE 152A - Digital Design Principles 9

Deterministic Recognizers

Definition of acceptance and recognition
A string is accepted by a machine if and only if the
state that the machine enters after having read
the rightmost symbol is an accepting state

Otherwise, the string is rejected

The set of strings recognized by a machine thus
consists of all the input strings that take the
machine from its starting state to an accepting
state

November 9, 2006 ECE 152A - Digital Design Principles 10

Regular Expressions

Concerned here with the characterization of
sets of strings recognized by finite automata
A compact language for describing such sets
of strings is known as the language of regular
expressions

Example 01(01)* describes the set consisting of
those strings that can be formed by concatenating
one or more 01 strings

01 + 0101 + 010101 + 01010101 + ...

6

November 9, 2006 ECE 152A - Digital Design Principles 11

Design Example

Design a Moore machine that recognizes the
input string ending with 101

Any string ending in 101 will be accepted
Regular expression is (1+0)*(101)
111101 recognizes (accepts) string on sixth input

The machine’s output goes to one each time the
sequence 101 is detected

10101 recognizes (accepts) string on the fifth input
Circuit’s output goes high on third input and fifth input

November 9, 2006 ECE 152A - Digital Design Principles 12

Design Example

State Diagram

0
0

2
0

1
0

3
1

0

0
0

0

1

1

1

1

Starting State

Accepting State

7

November 9, 2006 ECE 152A - Digital Design Principles 13

Design Example

State table with secondary state assignment

01100102

10110113

00110011

00100000

ZA+B+A+B+AB

x=1x=0PS

NS

November 9, 2006 ECE 152A - Digital Design Principles 14

Design Example

Next State Maps

AB

x
00 01

0

1

11 10
AB

x
00 01

0

1

11 10

1 11

A+ = x’B + xAB’ B+ = x

1 1

11

z=AB (from state table)

8

November 9, 2006 ECE 152A - Digital Design Principles 15

Design Example

Design can now be implemented
In discrete hardware, directly from next state
maps with D flip-flops or using excitation tables for
T or JK flip-flops
In Verilog directly from state table

Verilog implementation follows

November 9, 2006 ECE 152A - Digital Design Principles 16

Moore Machine – Verilog Implementation

Verilog Code
state[1] = state
variable A
state[0] = state
variable B
Symbolic
states

zero, one, two,
three

9

November 9, 2006 ECE 152A - Digital Design Principles 17

Moore Machine – Verilog Implementation

Timing Simulation

Input sequence 1 1 0 1 0 1 1 0 0

terminal state
string accepted

Moore output
(stable for following period)

November 9, 2006 ECE 152A - Digital Design Principles 18

Conversion to Mealy Machine

Recall difference between Mealy and Moore
machine is in generation of output

Note state table for design example

01100102

10110113

00110011

00100000

ZA+B+A+B+AB

x=1x=0PS

NS

Next states are the same, but
output is different

10

November 9, 2006 ECE 152A - Digital Design Principles 19

Conversion to Mealy Machine

Assign Moore output (state) to Mealy
transition

01100102

10110113

00110011

00100000

ZA+B+A+B+AB

x=1x=0PS

NS

11,100,0102

01,010.0113

01,010,0011

01,000,0000

A+B+, ZA+B+, ZAB

x=1x=0PS

NS

November 9, 2006 ECE 152A - Digital Design Principles 20

Conversion to Mealy Machine

Note that rows 1 and 3 of the state table are
identical

Identical rows can be combined into a single state

11,100,0102

01,010.0113

01,010,0011

01,000,0000

A+B+, ZA+B+, ZAB

x=1x=0PS

NS

01,100,0102

01,010,0011

01,000,0000

A+B+A+B+AB

x=1x=0PS

NS

11

November 9, 2006 ECE 152A - Digital Design Principles 21

Conversion to Mealy Machine

Because outputs in a Mealy machine are
associated with the transition and not the
next state, states 1 and 3 can be combined

Call combined state “state 1” and eliminate state 3
New state 1 entered with output of 0 from old state 1
New state 1 entered with output of 1 from unchanged
state 2

Technically, no longer a finite state recognizer
because of Mealy implementation

No longer an acceptance “state”

November 9, 2006 ECE 152A - Digital Design Principles 22

Conversion to Mealy Machine

State diagram

0

2

1

0/0

0/0

0/0

1/0

1/0

1/1

12

November 9, 2006 ECE 152A - Digital Design Principles 23

Conversion to Mealy Machine

Next state and output maps

AB

x
00 01

0

1

11 10

1

AB

x
00 01

0

1

11 10

AB

x
00 01

0

1

11 10

11

1

A+ = x’B
B+ = x
z = xA

X
1

X

X

X

X

X

November 9, 2006 ECE 152A - Digital Design Principles 24

Mealy Machine – Verilog Implementation

Verilog Code
Output
assigned to
declaratively
(wire)
Implementation
with case
statement

13

November 9, 2006 ECE 152A - Digital Design Principles 25

Mealy Machine – Verilog Implementation

Timing Simulation

Input sequence 1 1 0 1 0 1 1 0 0

string accepted Mealy output (valid on active clock edge)

November 9, 2006 ECE 152A - Digital Design Principles 26

Mealy Machine – Verilog Implementation

Alternative Verilog
Code

Implemented
directly from next
state equations for
state variables A
and B

14

November 9, 2006 ECE 152A - Digital Design Principles 27

Mealy Machine – Verilog Implementation

Timing Simulation (alternative code)

Input sequence 1 1 0 1 0 1 1 0 0

string accepted Mealy output (valid on active clock edge)

November 9, 2006 ECE 152A - Digital Design Principles 28

Conversion from Mealy to Moore

0

2

1

0/0

0/0

1/0

1/0

1/1

States that can be entered
with different outputs (0 and
1 in this case) must be split

0/0

15

November 9, 2006 ECE 152A - Digital Design Principles 29

Conversion from Mealy to Moore

0

2

1

0/0

0/0

1/0

1/0

1/1

1A

1B

0

1

Split State 1

0/0

States that can be entered
with different outputs (0 and
1 in this case) must be split

November 9, 2006 ECE 152A - Digital Design Principles 30

Conversion from Mealy to Moore

0

2

1

0/0

0/0

1/0

1/0

1/1

1A

1B

0

1 1/0

Input = 1

0/0

1/0

16

November 9, 2006 ECE 152A - Digital Design Principles 31

Conversion from Mealy to Moore

0

2

1

0/0

0/0

1/0

1/0

1/1

1A

1B

0

1 1/0
0/0

Input = 0

0/0

0/0

November 9, 2006 ECE 152A - Digital Design Principles 32

Conversion from Mealy to Moore

0

2

1

0/0

0/0

0/0

1/0

1/0

1/1

1A

1B

0

1 1/0
0/0

Output = 0

Output = 1

17

November 9, 2006 ECE 152A - Digital Design Principles 33

Conversion from Mealy to Moore

0

2

0

1

3

0

1

0

0

0

0

0

1

11

1

... the original Moore machine

0

2

0/0

0/0

0/0

1/0

1A

1B

0

1 1/0
0/0

Output = 0

Output = 1

