
 1

Name:__
Perm #:___

Lab Section TA:______________________________________

ECE 152A-Winter 2007
Prof. Volkan Rodoplu

MIDTERM EXAMINATION

INSTRUCTIONS:

1. READ THIS PAGE THOROUGHLY WHEN YOU RECEIVE IT, BUT DO NOT
START TURNING TO THE OTHER PAGES UNTIL YOU ARE INSTRUCTED TO
DO SO.

2. WHENEVER INDICATED, YOU MUST WRITE YOUR ANSWERS ON THE
ANSWER LINES PROVIDED IN CERTAIN PROBLEMS. NO PARTIAL CREDIT
WILL BE GIVEN ON THESE PROBLEMS. (We will check only the answer on that
line.)

3. On other problems, PARTIAL CREDIT will be given only to true statements that
make progress towards the correct answer. Partial credit may be given to correct
reasoning in developing structures such as K-maps and truth tables in which the variables
are clearly labeled. NO partial credit will be given for incorrect statements or statements
to which no truth value can be assigned (such as a bunch of numbers or algebraic
expressions). NO partial credit will be given for statements that use symbols that the
problem statement or you have not defined. NO credit will be given for any work that is
not clearly labeled with the part and problem number to which this work provides an
answer.

4. All the exam rules in the course syllabus apply to this exam.

5. You may remove the staple from the exam pages, if is more convenient. We will
provide a stapler at the end of the exam.

 2

STUDENTS MUST LEAVE THIS PAGE BLANK

Problem
Number

Points Out of

1 25

2 10

3 25

4 15

5 15

6 25

7 15

8 20

TOTAL 180

 3

PROBLEMS:

Problem # 1 COMBINATIONAL LOGIC DESIGN [25 points]

1. (a) Draw the circuit schematic that implements

F = A' B + C '

using only NAND gates. Your implementation must use at most 4 NAND gates.

Instructions: a. Any implementation that uses any other gate will get zero points. In
particular, you may not assume that inverted inputs are available.
 b. You do not need to find the implementation that uses the minimum
number of NAND gates. Any correct implementation that uses less than or equal to 4
NAND gates is acceptable.
 c. You MUST place a BOX around your final answer.

 4

 5

(b) Given the TTL chip below, show all connections (including the ones to VDD and
GND) to implement the function F in Part (a) of this problem.

 6

Problem # 2 COMBINATIONAL LOGIC DESIGN [25 points]

Implement a circuit that adds two 2-bit unsigned numbers A and B if and only if a switch
K=1. If K=0, the circuit outputs a 2-bit number whose least significant bit (LSB) is the
LSB of A, and whose MSB is the LSB of B.

EACH PART BELOW GETS EITHER ZERO OR FULL CREDIT (i.e. no partial credit
will be given for each part.)

(a) (2 points) Define your input and output variables.

(b) (3 points) Draw the interface schematic (also known as the "top-level schematic" or
"symbol"). Clearly show all of the input and outputs. For vector variables, indicate their
bitwidths.

 7

(c) (10 points) Write down a minimum sum of products (SOP) expression for each
output. (Your final expressions must be in algebraic form.) You may do this via K-
maps, or you may observe the structure of the problem and write down the answer in
minimum SOP form, by inspection.

 8

(d) (10 points) Write down a minimum product of sums (POS) expression for each
output. (Your final expressions must be in algebraic form.)

 9

Problem # 2 VERILOG [10 points]

(a) (5 points) Write a complete Verilog module that implements a 2:1 MUX using the

 ? :

ternary conditional operator. (Implementations that use other techniques will get zero

credit. No partial credit will be given on this part of the problem.)

 10

(b) (10 points) By instantiating your 2:1 MUX from Part (a), write a complete Verilog
module that implements a 4:1 MUX. You must use only instantiations of 2:1 MUXes,
and no other combinational logic in your implementation. You must also use the
minimum number of 2:1 muxes that are necessary to implement a 4:1 mux. (Any other
implementations will get zero credit.)

 11

Problem # 3 A NEW GATE [20 points]

Your friends in solid-state and device electronics have built a new gate that performs a
new binary operation, denoted by *, that is defined as follows:

A * B = A' B

(a) (8 points) Is * commutative? Prove your answer.

 12

(b) (8 points) Is * associative? Prove your answer.

 13

(c) (4 points) Find the dual of *.

 14

Problem # 4 TIMING DIAGRAMS__ [25 points]
The circuit for this problem is given below. See the next page for the problem
statement. (Show your results up to 15.5 nanoseconds of simulation time.)

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B
D Q

D Q

U

CLK

(1 ns)

L1 (0ns)

F1 (0 ns)

P

M

(2 ns)

N

(2 ns) R
A

clk

CLK

A

B

M

N

P

R

 U

 15

In this circuit, L1 is a positive level-sensitive D latch.

F1 is positive edge-triggered D flip-flop.

CLK is the clock input signal.

A and B are input signals.

M, N, P, R, and U are nodes in the circuit.

The gate delays have been shown in the figure (and are listed below):

 Inverter: 2 ns
 OR gate: 1 ns

The propagation delays of latch L1 and flip-flop F1 are negligible (0 ns).

External wires have negligible (i.e. zero) delay.

Assume that the inputs A and B have been stable for a very long time before time t =
0, at their initial values shown: A = 1, B = 1.

Assume that the CLK has been running for a long time before t = 0, in the pattern
shown in the figure. (The clock period is 8 ns.)

Complete the timing diagram that appears beneath the circuit on the previous page.
The waveforms for the inputs A, B, and CLK are given.

Fill in the waveforms for M, N, P, R and U.

Each waveform in your answer MUST be shown up to 15.5 nanoseconds of the
simulation. (See the time axis on the diagrams on the previous page.)

Grading: Each waveform is worth 5 points. For each waveform, no partial credit will be
given.

 16

Problem # 5 A SENSOR ARRAY __________________________[15 points]

A sensor array is used to measure the conductivity of water at the mouth of a river.
Conductivity is represented as a real positive number

Let iM represent the conductivity measured at array element { }, 1,2,3i i ∈ .

Your job is to build a detector device that signals “Alert!” if and only if the conductivity
simultaneously measured by any two adjacent sensors in this array differs by more than
10%. (Note that sensors 1 and 2 are adjacent, and 2 and 3 are adjacent.)

Define all of your variables. (You must make use of iM ’s in your definitions).

Draw the schematic for the controller. (Place your final schematic in a box.)

conductivity
sensor 1

conductivity
sensor 2

conductivity
sensor 3

 17

Problem # 6 DELAY ANALYSIS__ [25 points]

(a) (5 points) By drawing the schematic, implement a 2-bit half adder using only one 2-
input XOR gate, and one AND gate.

(b) (10 points) By drawing the schematic, implement a 2-bit full adder using only two 2-
input XOR gates, two 2-input AND gates, and one 2-input OR gate.

(c) (5 points) In this part, we implement a 4-bit adder (that adds two 4-bit unsigned
numbers) by connecting the half adder from Part (a) and the full adder from Part (b) in
cascade; that is, we are connecting a full adder and a half adder in a ripple carry
adder structure.

The inputs are A[3:0], B[3:0] and C0, and the outputs are sum[3:0] and a signal that
indicates overflow. Your 4-bit adder must be able to detect OVERFLOW.

In the implementation schematic below, show how to connect the two adders. YOU
MUST LABEL ANY REMAINING VARIABLES CLEARLY ON THE FIGURE.
.

"1st stage" "2nd stage"

 18

(b) (15 points) Assume that all of the input variables are available at time t = 0 (indicated
by @0).

THE GATE DELAYS ARE AS FOLLOWS:
 AND 3 ns
 OR 4 ns
 Inverter 1 ns
 XOR 2 ns

Perform the delay analysis to calculate the worst-case delay (in nanoseconds) of the 4-bit
adder in Part (c). On the figure in Part (c), you must show the delays (using the @
notation) on all of the wires that appear in the figure. (Note that no delays should be
shown for the internal wires of the 2-bit adders.)

You may use the rest of this page for your scratch work (e.g. you may expand and draw
the full and half adders below, and trace through the delays.)

YOU MAY NOT ASSUME A UNIT DELAY FOR EACH GATE. YOU MUST USE
THE TABLE ABOVE FOR THE GATE DELAYS.

Write your final answer here: Worst-case delay of 4-bit adder is :_________________ ns.

 19

Problem # 7 COUNTER DESIGN [15 points]

Design a synchronous, edge-triggered counter that operates as follows: the counter does
not have a Reset button and may potentially start at any count. However, after the
minimum number of cycles possible, it should start counting in the sequence 7, 6, 5, 4,
7, 6, 5, 4, . . ., and it repeats this sequence forever.

(a) (1 point) Define the input, output and state variables for this counter. (You must show
all the bitwidths for any vector variables.)

(b) (1 point) Draw the interface schematic for this counter. (Show all the bitwidths on the
schematic for any vector variables.)

 20

(c) (13 points) Write down both the state diagram and the state table for this counter.
You must implement it as a MOORE machine. (Write down the state diagram for your
own convenience, but we will grade only the state TABLE.)

 21

Problem # 8 ENCODER DESIGN IN VERILOG [20 points]

Write a complete Verilog module that uses only continuous assignments (which use the
"assign" keyword) to implement an 4:2 "encoder", which is defined as the right inverse of
a 2:4 decoder.

That is, the encoder takes the output of the 2:4 decoder and must produce the original
input into the decoder.

• Implement ONLY the Encoder, not the decoder!
• YOUR VERILOG MODULE MUST USE THE SAME VARIABLES AS

SHOWN IN THE DIAGRAM ABOVE, HOWEVER WRITTEN IN VECTOR
FORM. YOU WILL BE PENALIZED IF YOU DO NOT USE THE VECTOR
NOTATION IN VERILOG.

F0

2:4
DECODER

4:2
ENCODER

A1

A0

F3

F2

F1

A1

A0

 22

(You may continue your solutions to Problem # 8 on this page.)

