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Nonlinear Control of Active Magnetic: 
Bearings: A Backstepping Approach 

Marcio S. de Queiroz and Darren 

Abstract-In this paper, we utilize a nonlinear model of a 
planar rotor disk, active magnetic bearing system to develop a 
nonlinear controller for the full-order electromechanical system. 
The controller requires measurement of the rotor position, rotor 
velocity, and stator current and achieves global exponential 
rotor position tracking. Simulations are provided to illustrate the 
performance of the controller. 

I. INTRODUCTION 

N A typical magnetic bearing application, the magnetic I forces, which are applied by sets of stator electromagnets 
(see Fig. I) ,  must be adjusted online to ensure that the rotor 
is accurately positioned; however, the control problem is 
complicated due to the inherent nonlinearities associated with 
the electromechanical dynamics (for a review of the evolution 
of magnetic bearing hardware, the reader is referred to [2]). As 
pointed out in [l 11, the use of magnetic bearings in industrial 
and manufacturing applications will most likely increase due 
to their ability to suspend high-speed rotating loads with no 
friction and operate under environmental constraints which 
prevent the use of lubrication. Since magnetic bearings can be 
actively controlled, they offer many other potential advantages 
[ 121 over conventional bearings such as eliminating vibration 
through active damping, adjusting the stiffness of the suspend- 
ing load, or providing an automatic balancing capability. As 
pointed out in [16], many of the previous active magnetic 
bearing (AMB) control techniques are based on the linearized 
electromechanical system. For example, Matsumura ei' al. [l 11 
designed an optimal controller to regulate the rotor position. 
In [ 121, Mohamed et al. used the Q-parameterization theory 
to stabilize the rotor position and evaluate noise rejection and 
robustness to parametric uncertainty. Later, in [ 131, Mohamed 
et al. illustrated how the Q-parameterization theory could 
be used to autobalance the rotor of a vertical shaft AMB 
system. In [I], Beale et al. introduced an adaptive forced 
balancing controller which exhibited negligible effects on the 
bandwidth and the stability margin. In [16], Smith et al. pro- 
vided a starting point for addressing the possible advantages 
or disadvantages of nonlinear control techniques for AMB 
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applications. Specifically, Srniith et al. utilized input-output 
feedback linearization and sliding mode control techniques to 
center the rotor in a set of magnetic bearings (see [6] for other 
work based on input-output fcedback linearization). 

In the last couple of years, the integrator backstepping 
(IB) control technique [lo] has received a great ded  of 
attention since it provides thl: framework fclr attacking many 
electromechanical control problems similar to AMB appli- 
cations. One of the main advantages of the IB family of 
control design tools is the proviso for systematic desirable 
modifications of the control structure such as compensation 
for parametric uncertainty or eliminating state measurernents 
(i.e., adaptive IB and observed IB [lo]). Fortunately, thl: 
structure of the magnetic bearing dynamics facilitates thl- 
use of the IB technique. Specifically, the electromechanical 
system of a magnetic bearing can be subdivided into thle 
mechanical subsystem dynamics, the algebraic force Irans- 
mission relationship, and the electrical subsystem dynamics,. 
If one utilizes the co-energy method [19] to derive a set of 
equations for control design purposes, the flux linkage model 
determines the complexity of' the resulting dynamics. That 
is, at least in principle, standard calculations can be applied 
to the flux linkage model to complete the description of the 
electrical subsystem dynamics, and the algebraic force ltrans- 
mission relationship. Based on this fact, we use a nonlinear 
model for a planar rotor disk AMB system to develop a 
backstepping-type controller. That is, we first design a desired 
force trajectory signal to ensure that the rotor position tracks 
a desired position trajectory. \Ne then use the structure of the 
algebraic force transmission relationship to develop a static 
equation which ensures that the desired force is delivered to the 
mechanical subsystem. The continuation of the backstepping 
control design procedure is facilitated by requiring that the 
desired current trajectory signals be constructed to satisfy 
this static equation. The desired current trajectory signals are 
then used as the control objective for the design of voltage 
input, current tracking controllers for the electrical subs,ystern 
dynamics. Finally, a composiie Lyapunov function is used to 
illustrate global exponential rotor position tracking. We then 
use an example flux linkage model, which1 was used in the 
design of the controller presented in [16], to illustrate how 
the desired current trajectory signals can be constructed' to 
ensure that the desired forc-, ic delivered to the mechanical 

' In  the electric motor control held, the procedure of constructing the 
desired current trajectory signals suclh that the algebraic torque transmission 
relationship outputs the desired torque trajectory signal is often called a 
commutation strategy. 

1063-6536/96$0.5.00 0 1996 IEEE 
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"'w 
Fig. 1. Top view of a planar rotor disk magnetic bearing system 

subsystem (i.e., the desired current trajectory signals satisfy the 
static equation associated with the algebraic force transmission 
relationship). 

This paper is organized as follows. In Section 11, we present 
the electromechanical model and the modeling assumptions for 
the planar rotor disk AMB system. In Section 111, we design 
the nonlinear controller and present the stability result. In 
Section IV, we illustrate how a specific flux linkage model can 
be utilized to explicitly design the desired current trajectory 
signals. To validate the performance of the proposed controller, 
we present some simulation results in Section V. Section VI 
concludes with some remarks. 

11. ELECTROMECHANICAL MODEL 

To facilitate the subsequent control development, we will 
assume that the mechanical subsystem model for the magnetic 
bearing system depicted by Fig. 1 [16] is given by 

2 

where g ( t ) ,  Q(t), and y ( t )  represent the rotor disk position, 
velocity, and acceleration, respectively, along the y-direction 
(see Fig. I), z ( t ) ,  k ( t ) ,  and ?( t )  represent the rotor position, 
velocity, and acceleration, respectively, along the 2-direction, 
m represents the mass of the rotor, Fz(g ,  It), F3 (IC, I,) denote 
the forces produced by each stator electromagnetic circuit, and 
I,, I3 represent the current in each stator coil. While the above 
definition for the magnetic forces is presented in very a general 
form, we have made the common simplifying assumption that 
the applied magnetic forces are only dependent on the direction 
of major motion and the measured current in winding of the 
coil (e.g., Fl(y,11) only depends on y and 11). 

The flux linkage model allows us to compute the model for 
the force produced by the electrical phases as follows [19]: 

i=l 
4 

J=3 

for i = 1; 2 and j = 3,4,  where Xi(y, I i ) ,  Xj(z, I,) represent 
the flux linkage model. In addition, the flux linkage model 
allows us to compute the electrical subsystem dynamics for 

m, = F3(x, I j )  
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the electrical phases as follows [19]: 

&(y, I i ) &  + RiL + Bi(y, 1i)y = vi 

L 3 ( x , I j ) i j  + RjIj + Bj(z ,  I j ) i  = ~j 
(3) 

for i = 1 , 2  and j = 3, 4, where v i ,  v j  denotes the input 
voltage, R;, Rj denotes the electrical resistance, and the in- 
ductance quantities L;(y, I i ) ,  Lj(x, I j )  (which are assumed to 
be positive) and the back-EMF quantities B;(y, I J ,  B, f (x ,  I j )  
are calculated as follows [19]: 

Remark 1: To facilitate the analysis, we require that 
F;(y,  I;), Fj(x, I j )  be first-order differentiable and that 

dF;(y, &)/3Ii ,  dFj(xC; I j ) / d I j  are all bounded if 2, y, Ii, 
Ij are bounded. For purposes of feedback and feedforward 
control, we will also assume that y, $, Ii, z, k ,  and Ij 
are measurable, and that the above electromechanical model 
is exactly known. We note that Hall effect sensors are 
usually utilized to measure the gap between the rotor and 
stator bearings (hence, y and x are measurable through the 
appropriate kinematic translations) while inexpensive current 
sensors can be used to measure I; and Ij .  To obtain y and 
k ,  one might have to resort to numerically differentiating the 
position measurements, using model-based velocity observers, 
or using other nonlinear techniques [lo]. 

L ( Y ,  Ii)> Lj(? I j ) ,  B i b ,  I ; ) ,  Bj(”, I j ) ,  Fib,  I i ) ,  Fj(Z , I . )  . 7 ’  

111. CONTROLLER DEVELOPMENT 
Since the x and y directions are decoupled in the mechanical 

model defined in ( l ) ,  we need only present the control strategy 
for the y-direction (i.e., the controller for the z-direction is a 
straightforward modification of the proposed controller). To 
facilitate the design of a rotor position tracking2 controller 
for the electromechanical model given by (1) through (3), we 
define the rotor position tracking error and the corresponding 
filtered tracking error [15] as follows: 

e = y d - y  r=C:+ae ( 5 )  

where y d ( t )  represents the desired rotor position trajectory in 
the y-direction, and a is a positive constant control gain (it 
is assumed that y d ,  y d ,  yd,  Y d  are all bounded signals). TO 

facilitate the subsequent control development, we also define 
the current tracking error (i.e., v i )  and the force tracking error 
(i.e., q f )  as follows: 

2 

V i  = Idi ~ I i  Vf = c [ F i ( V ,  l d i )  - F i ( y ,  I i ) ]  (6) 

where I d i  ( t )  represent the desired stator current trajectories 
for i = 1 ,2 .  The explicit definition for Idi(t) will be given 
during the design procedure given below. 

2Usually, the magnetic bearing problem is solved as a regulation problem; 
however, to provide increased flexibility (i.e., a “soft” desired position 
trajectory signal could be used when the bearing is initially energized), we 
will design a position tracking controller. 

i=l 

A. Mechanical Subsystem De:i.ign/Analysis 

Given the definition of the filtered tracking error given in 
( 5 )  and the force tracking error given by (6), we can writle the 
mechanical subsystem dynamics of (1) as 

where the term E,”=, F,(y, Idz) has been added to and sub- 
tracted from the right-hand side of (7). From the form of (7). 
we require that the desired conrent trajectory signals, denoted 
by Id,(y, f d ) ,  be designed to satisfy the following design 
equation: 

2 

i=l 

where f d ( t )  denotes the desired force trajectory defined as 
follows: 

with k ,  being a positive control gain. 
Remark 2: In addition to satisfying the rdationship given 

by (8), the subsequent backslepping [8] procedure mandates 
the following design requirements on Idz(y, f d ) :  1) Id2 must 
be bounded given that y, f d  are bounded, 2) l d ,  must be first- 
order differentiable, and 3) id, must be bounded given that 
y,  y,  f d ,  f d  are bounded. 

After explicitly substituting (8) and (9) into (7) and then 
simplifying the resulting expression, we obtain the closed-loop 
dynamics for the filtered tracking error in the following form: 

To provide motivation for a control term injected during the 
subsequent voltage control input design, we can performi the 
following preliminary analysis,. Specifically, we define the 
nonnegative function 

After taking the time derivative of (11) along (lo), we can 
obtain the following expression: 

From the form of (12) and some knowledge of present nonlin- 
ear control techniques, we can see that the interconnection term 
(i.e., ~ f r )  prevents us from drawing concliisions regarding 
the regulation of the filtered tracking error; however, as we 
shall see in the next section, the effects of 1.his term can be 
neutralized by injecting the appropriate terms, into the cuirent 
tracking error dynamics. 
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B. Electrical Subsystem DesigdAnalysis 
T O  formulate the voltage control input, we take the time 

derivative of the current tracking error term defined in (6) ,  
and then substitute the electrical subsystem dynamics of (3) 
for i i ( t )  to yield 

After substituting the control input given by (18) into (16), we 
can write the Closed-lOoP dynamics for %(t )  as fOllOWS: 

(20) 2 - e q i  - ui. 

To provide motivation for the design of the auxiliary control 
term defined in (1  9) while also preparing for the statement of 
the main result, we perform the following preliminary analysis. 

q .  - -k 

. ' aid; . 1 
7; = --fd+-y+- (RiIa+Bi(y, &)$--v i ) .  (13) 

d f d  Li(Y,Ii)  Specifically, we define the following nonnegative function: 
Given the definition of the desired force signal defined in (9), 
we can see that f d ( t )  can be expressed as a function of y ,  
Ij, and the desired motion trajectory; therefore, fd(t) can be 

1 v = Vl + - 
2 77; 

i=l 

where V ~ i t )  was defined in (11). After taking the time- expressed as 
I , ,  \ ,  U 

f d  ' = 7 a f d " .  Y d  + - y d  a f d  .. + -yd a f d  . + -y a f d  . + -y a f d  ., derivative of V ( t )  defined by (21), and substituting (12) for 
dYd a y d  3yd ay ay (14) Vi(t )  and (20) for +a@), we can arrange V ( t )  in the following 

where (9) can be used to compute the partial derivatives as 
follows: 

manner: 

All of the quantities on the right-hand side of (14) are mea- 
surable except for i j ;  however, from (l), the rotor acceleration 
can be written as 

* 2  
1 

y = - m K ( y ,  1%). 
a = l  

After substituting (15) into (14), then substituting the resulting 
expression for f d ( t )  into (13), we can write the open-loop 
current tracking dynamics for q,(t)  in the following form: 

where !&(t) is an auxiliary measurable function given by 

Based on the open-loop dynamics of (16), the structure of 
(12), and the subsequent analysis, we define the voltage input 
control v2 ( t )  as 

(18) 

where ICe is a positive control gain, and ua(t)  is an auxiliary 
control input [ 171 utilized to sever the interconnections be- 
tween the mechanical and electrical subsystem and is explicitly 
defined as f o l l o ~ s : ~  

U2 = L ( Y ,  L ) ( b ? %  + 0% + U,) 

(19) 
if r l z  # 0 
if 7% = 0. 

2 r 2 1  

i=l L 

If vi = 0, then it is easy to see from the definition of q f ( t )  
given in (6) that qf = 0; hence, (22) becomes 

2 

2 = l  

If q2 # 0, then we can substitute the definitions for q f ( t )  and 
u,(t) from (6) and (19), respectively, into the bracketed term 
in (22) to yield 

2 

i=l 
r z  

L i=l 

which simplifies to the same result as that given by (23). 

C. Composite Stability Result 

Provided the design equation of (8) and the restrictions 
on I d a ( y ,  f d )  given in Remark 2 are satisfied, the proposed 
input voltage control ensures global exponential rotor position 
tracking. Specifically, we can use the form of (21) to state that 
V(t) can be upper and lower bounded as follows: 

1 1 
-xlllz112 2 I v I ,x21.z112 (25) 

where 

z = [T ,  71, 7 2  I T ,  XI = min{m, 11, ~2 = max{m, 11. 
(26) 

In addition, we can use the form of (23) to state that V can 
be upper bounded as follows: 

V 5 - ~ 3 1 1 ~ / 1 2  (27) 

31t is important to note that the definition of U ,  when vz # 0 reduces to 
the definition of U ,  when q2 = 0 via L'Hospital's Rule. That is, the auxiliary 
control input U ,  does not exhibit a singularity or a discontinuity. 

where 

X3 = min{k,, k c } .  
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From (25) and (27), standard Lyapunov type arguments [15] 
can be used to state that the filtered tracking error is exponen- 
tially stable in the following form: 

Since the rotor position tracking error is related to the filtered 
tracking error according to the linear differential equation 
given by (3, we can use standard linear control arguments 
[I51 to show that the rotor position tracking error is globally 
exponentially stable. From the above information and the 
structure of the voltage control input and the electromechanical 
system, we can also show that all of the system signals remain 
bounded during closed-loop operation. 

Remark 3: The above control strategy suffers from two ma- 
jor drawbacks: l) the controller requires exact model knowl- 
edge, and 2) the controller requires velocity measurements. 
To deal with uncertainty associated with any of the electro- 
mechanical parameters which appear linearly in the model, 
the above controller could be redesigned as an adaptive 
backstepping [SI controller to yield global asymptotic rotor 
position tracking. Under certain conditions on the structure of 
the electromechanical dynamics, the adaptive controller may 
also be further modified, as illustrated for multiphase electric 
machines in [IS] and for the suspended ball problem in [lo], 
to eliminate the requirement for velocity measurements. 

Remark 4: In most of the previous work, a set of bearings 
is used to support a rotor shaft. That is, two of the magnetic 
bearing systems depicted in Fig. 1 are utilized to radially 
support a rigid vertical rotor [ 131 while an additional magnetic 
system can be used to regulate the shaft along the axial 
direction. In this setup, the control problem is complicated 
by the fact that the mechanical dynamics are coupled as 
opposed to the decoupled dynamics of (1). However, we can 
use standard techniques to derive the mechanical dynamics of 
the system as follows [7], Cl.51: 

(28) 

where q E R6 is the rotor position vector, M ( q )  E R6x6 
denotes the rotor inertia matrix, V, (4, q )  E R6 represents 
the Coriolis-centripetal matrix, G(q) E R6 is the gravity 
vector, J ( q )  E is a Jacobian matrix, and F ( q ,  I % j )  E R6 
represents the transmitted forcekorque vector defined as 

M ( q ) i  + Vm(q, 414 + G(q) = J - T ( 4 ) F ( 4 ,  I%,) 

F ( q ,  I t , )  
2 2 

j=1 j=1 

with q% denoting the zth component of the position vector 
q ,  Ft,(.),Iaj(t) for z = 1 , . . . , 5  and J = 1 . 2  denoting the 
forces and currents produced by each stator electromagnetic 
circuit, respectively, r I  representing the input torque about 
the principal axis of the rotor shaft produced by a motor, and 
rL being the load torque about the principal axis of the shaft. 

While the structure of the f lectromechanical system for the 
six degree-of-freedom (DOF) bearing system is substantially 
more complex that the dynamic equations given by (1) ancl (3) 
recent work in the design of nonlinear controllers for rigid- 
link electrically driven (RLED) robot manipulators illustrate 
that the problem is tractable. Specifically, adaptive full-state 
feedback and adaptive partial-state feedback controllers [ 3 ] .  
[5] were recently designed for RLED manipulators actuated by 
multiphase electric machines. The form of (28) also illustrates 
that the input torque is meclianically coupled to the forces 
applied by the magnetic bearing system: hence, it seems that 
the magnetic bearing control system and the control system 
which generates the input torque must be designed in tandem 
to accurately control the position of the shaft. 

IV. DESIRED CURRENT TRAJECTORY DESIGN EXAMPL.E 

If fringing and leakage are neglected and the magnetic 
circuit is assumed to be linear, the following flux linlkage 
model is often utilized to complete the electromechanical 
dynamic system description of Section I1 [IB]: 

where 

(30) 

LO,  L1 are positive constant parameters which depend ori the 
number of stator coil turns, permeability of the materiall/air, 
cross-sectional area of the electromagnet, etc., and go is a 
constant kinematic quantity given by ,90 = T,  - T, (see Fig. 1). 
The flux linkage model given by (29) can now be used to 
calculate the quantities given by (2) and (41). For example, 
Ft (y , I t )  of (2) is explicitly given by 

Note that by substituting (31) iinto (19), the expression for ui 
simplifies to 

We now illustrate how the flux linkage model given by 
(29) can be used to design the desired current trajectories 
such that the design equation given by (8) and the restrictions 
on I d a ( y , f d )  given in Rema~k 2 are satisfied. Specifictally, 
after substituting (31) into (S), we must construct Idz(y, f d )  

to satisfy 

To satisfy (33), we first design I d L ( t )  to cancel some of the 
terms as follows: 
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where ydi( f d )  is an auxiliary function which must be designed 
to be nonnegative to ensure that (34) is well posed. After 
substituting the right-hand side of (34) into (33) for Idi, we 
must now design ' yd i  ( f d )  to satisfy the following relationship: 

2 

(35) 
i=l 

Based on the structure of (35) and the backstepping constraints 
discussed in Remark 2, we now design the auxiliary function 
~ d i  ( f d )  as follows:4 

where the positive scalar design parameter yo is used to set 
the desired threshold winding current. 

To illustrate the motivation for the structure of (36), we 
substitute (36) into (35) to yield 

2 / r  

which can be rewritten as 

Hence, we can now see from (38) that Idz(y,fd) has been 
designed to ensure that desired force trajectory is delivered 
to the mechanical subsystem. That is, the desired current 
trajectory of (34) and (36) has been designed to satisfy the 
relationship given by (8). 

Remark 5: It is important to note that the physical geometry 
of the mechanical system (see Fig. 1) ensures that ly(t)l 5 
go = r ,  - r,; hence, if ydi(t) 2 0, then IdZ(t)  2 0 for all 
time. It is also easy to see from (36) that 

Given the form of (34) and (36), we can now state that y d z ,  Idl. 
are bounded given that y ,  f d  are bounded (i.e., Condition 1) 
in Remark 2 has been satisfied). 

Remark 6: During the formulation of the current tracking 
error dynamics, we required the calculation of two partial 
derivative terms associated with Idz(y, f d )  [i.e., aId,/a fd 
and 3Id,/dy in (13)]. Based on (34) and (36), these partial 
derivative terms can now be calculated as follows: 

and 

4Since the equality given by (35) and the backstepping constraints given 
in Remark 2 are somewhat unrelated, we employed some tedious guess work 
during the formulation of (36). 

Hence, the desired current trajectory signal has been con- 
structed such that the above partial derivatives can be cal- 
culated; therefore, Condition 2) in Remark 2 is satisfied. We 
can also use the composite stability result and the structure 
of (40) and (41) to state that I d z  is bounded given that y, 
y, f d ,  and fd are bounded (i.e., Condition 3) in Remark 2 is 
satisfied). Indeed, from the structure of a I d , / a f d  and dld,/dy, 
we can now see the reason for including the desired threshold 
winding current design parameter yo during the construction 
of (36) (i.e., as a result of (39), we can see that the use of 
yo ensures that the partial derivatives of Id,@) do not blow 
up as f d  t 0). 

V. SIMULATION 

The controller described in Sections I11 and IV was sim- 
ulated for the planar rotor disk AMB system of Fig. 1. The 
applied control law can be summarized as follows: 

voltage input: vi = Li(y, Ii)(keqi + Ri + ui) 
desired current: Idi = 1 ( 2 ( g o  V G  + (-1)Zy) + L 1) 

. . J $ ( ( - I , ' + l f d  + Jm) I desired force: .fd = m y d  + ma& + k,r 

where L z ( y , I i ) ,  v i ,  ai, ui, and r were defined in (30), 
(6), (17), (32) ,  and (5), respectively. The system parameters 
utilized in the simulation were 

m=2.0 kg, 
L1 = 1.25 x 

go =lop3  m, Lo = 3.0 x lop4  H.m 
m, RI = R2 = R3 = R4 = 1.0 62. (42) 

Although the controller was designed to solve the tracking 
problem, the simulation was performed to regulate the planar 
rotor disk; hence, the desired position trajectory in the y- 
direction was chosen as 

yd(t) = 0.5eCt x m. 

The initial position of the center of the rotor disk on the y axis 
was set to y(0) = -0.2 x l0V3 m while the initial velocity 
and electrical currents were set to zero. 

First, the simulation was performed assuming exact knowl- 
edge of the parameter values given in (42). The set of control 
gains and the design parameter yo that resulted in good 
tracking performance were as follows: 

Q! = 2.0, k ,  = 5.0, k e  = 10.0, 70 = 0.6. (43) 

Fig. 2 illustrates the position tracking error in the y-direction, 
the input voltages w 1 ,  w z ,  and the stator currents 1 1 ,  I,. The 
same results can be obtained for the x-direction. We observed 
that increasing the control gain a the tracking error had a faster 
decay while changes in IC,, k, ,  and yo had little influence 
in the system response. Next, the controller robustness was 
evaluated by considering a 25% uncertainty in the parameter 
values given in (42) (except for go) .  The control gains and yo 
were set to the same values as given in (43). Fig. 3 illustrates 
the system performance. For this case, it was observed that the 
use of larger values for yo degraded substantially the tracking 
performance even causing instability. 
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Fig. 2.  System performance with exact parameter knowledge 
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Fig. 3. System performance with parametric uncertainty. 

VI. CONCLUSION force to the mechanical subsystem by satisfying a static 
design equation while also satisfying some mild constraints 
imposed by the backstepping Procedure, the controller Yields 
global exponential position tracking. An example flux linkage 
model was then used to illuscrate how the desired current 
trajectory signals can be constructed, and hence, complete 
the control description. Remarks on the possible extensions 

this paper, we have illustrated how the integrator back- 
stepping control design tools can be utilized to design a 
controller for the nonlinear dynamic equations representing 
a planar rotor disk, magnetic bearing system which depends 
on a general flux linkage model. Provided the desired current 
trajectory signals can be constructed to deliver the desired 
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of the proposed control structure, such as compensating for 
parametric uncertainty, eliminating state measurements, and 
upgrading to the six-DOF model, were also discussed. 

Since the controller has been developed for a general flux 
linkage model, it may be possible to redesign the desired 
current trajectory signals for a more sophisticated flux linkage 
model than the one used in (29). That is, the flux linkage 
model for each electromagnetic circuit should probably include 
dependencies on both position directions and all of the elec- 
trical currents [e.g., X;(z, y, I I , I ~ ,  1 3 , 1 4 ) ] ,  as well as exhibit 
an improved functional form which accounts for the shape 
of the rotor and the stator [4]. While it is possible to revise 
the design procedure to account for the new coupling in the 
electrical subsystem dynamics (i.e., assuming the composite 
inductance matrix is positive definite), it is unclear whether the 
new algebraic force transmission relationships would greatly 
hinder the construction of suitable desired current trajectory 
signals which ensure that the desired force is delivered to the 
mechanical subsystem and satisfy the conditions in Remark 2. 
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