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Abstract—The FastICA or fixed-point algorithm is one of the
most successful algorithms for linear independent component anal-
ysis (ICA) in terms of accuracy and computational complexity. Two
versions of the algorithm are available in literature and software:
a one-unit (deflation) algorithm and a symmetric algorithm. The
main result of this paper are analytic closed-form expressions that
characterize the separating ability of both versions of the algorithm
in a local sense, assuming a “good” initialization of the algorithms
and long data records. Based on the analysis, it is possible to com-
bine the advantages of the symmetric and one-unit version algo-
rithms and predict their performance. To validate the analysis, a
simple check of saddle points of the cost function is proposed that
allows to find a global minimum of the cost function in almost 100%
simulation runs. Second, the Cramér–Rao lower bound for linear
ICA is derived as an algorithm independent limit of the achievable
separation quality. The FastICA algorithm is shown to approach
this limit in certain scenarios. Extensive computer simulations sup-
porting the theoretical findings are included.

Index Terms—Blind source separation, independent component
analysis (ICA), Cramér–Rao lower bound.

I. INTRODUCTION

B LIND SOURCE separation (BSS), which consists of
recovering original signals from their mixtures when the

mixing process is unknown, has been a widely studied problem
in signal processing for the last two decades (for a review,
see [1]). Independent component analysis (ICA), a statistical
method for signal separation [2], [3], is also a well-known issue
in the community. Its aim is to transform the mixed random
signals into source signals or components that are as mutually
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independent as possible. There are a number of methods in-
tended to solve related problems such as blind deconvolution
and blind equalization [4]–[6].

One of the most widely used ICA algorithms for the linear
mixing model is FastICA, a fixed-point algorithm first proposed
by Hyvärinen and Oja [7], [8]. It is based on the optimization
of a nonlinear contrast function measuring the non-Gaussianity
of the sources. A widely used contrast function both in FastICA
and in many other ICA algorithms is the kurtosis [9]–[11]. This
approach can be considered as an extension of the algorithm by
Shalvi and Weinstein [6].

There are two varieties of the FastICA algorithm: the defla-
tion, or one-unit algorithm, and the symmetric algorithm. The
deflation approach, which is common for many other ICA al-
gorithms [9], estimates the components successively under or-
thogonality conditions. The symmetric algorithm estimates the
components in parallel. This consists of parallel computation of
the one-unit updates for each component, followed by subse-
quent symmetric orthogonalization of the estimated demixing
matrix after each iteration. A version of FastICA for complex
valued signals was proposed in [12].

An essential question is the convergence of the FastICA al-
gorithm. This can be approached from two directions. First, as-
suming an ideal infinitely large sample, theoretical expectations
for the contrast functions such as the kurtosis can be used in the
analysis. Then, the contrast function and the algorithm itself be-
come deterministic, and questions such as asymptotic stability
of the extrema and the convergence speed can be discussed. For
the kurtosis cost function and the one-unit algorithm, this anal-
ysis was done in [7], showing cubic convergence. For a gen-
eral cost function, the convergence speed is at least quadratic,
as shown in [8] (see also [3]). The monotonic convergence and
the speed for a general cost function for the related gradient al-
gorithm was considered in [13]. For the kurtosis cost function
and the symmetric FastICA algorithm, the cubic convergence
was proven in [14] (see also [15]). Different properties of the
one-unit version have been illustrated by computer simulations
in [16] where the accuracy is also shown to be very good in most
cases.

The second question of convergence considers the behavior
of the algorithm for a finite sample, which is the practical case.
Then, the theoretical expectations in the contrast functions are
replaced by sample averages. This results in errors in the esti-
mator for the demixing matrix. A classical measure of the error
is the asymptotic variance of the matrix elements. The goal of
designing an ICA algorithm is then to make this error as small
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as possible. For the FastICA algorithm, such an asymptotic per-
formance analysis for a general cost function was proposed in
[17].

The Cramér–Rao lower bound (CRB) provides an algorithm
independent bound for parameter estimation. In the context of
ICA, a Cramér–Rao-like bound for intersignal interference is
derived as asymptotic variance of a maximum-likelihood esti-
mate in [24], [26]–[29], and [32]. A similar result is known for
a related problem of blind deconvolution [30].

The purpose of the present paper is to look at the performance
of the FastICA algorithm, both the one-unit and symmetric ver-
sions, in this latter sense of asymptotic error, and compare it
with the exact CRB computed from its definition. The paper is
organized as follows. In Section II, the linear ICA model and
the FastICA algorithm are described. In addition, a novel check
of saddle points of the FastICA cost function is proposed that
allows to find the global minimum of the cost function in al-
most 100% simulation runs. Finally, the following criteria to
characterize the performance of the algorithm are introduced:
a gain matrix (variance of its elements) and a signal-to-inter-
ference ratio (SIR). In Section III, analytic expressions for the
variance of the off-diagonal gain matrix elements are derived
and discussed. These expressions are asymptotically valid for
large data sets when a “good” initialization of the algorithm is
assumed. Most of the details of the analysis are deferred to Ap-
pendixes. As an example of utilization of the analysis, a novel
variant of FastICA is proposed, which combines the one-unit
algorithm and the symmetric algorithm adaptively, depending
on empirical distribution of the estimated signal components, to
improve the performance.

In Section IV, the CRB on the variance of the off-diagonal
gain matrix elements is computed via inverse of a Fisher infor-
mation matrix. Section V compares the CRB with the asymp-
totic performance of FastICA and explains nonexistence of the
CRB for signals with bounded magnitude (e.g., uniform distri-
bution) and for some long-tailed distributions.

Section VI presents a number of computer simulations using
artificial data that validate and support the theoretical analysis.
The simulations also compare the algorithmic performance with
the CRB derived in Section IV. Finally, Section VII summarizes
the results and presents the conclusions.

II. DATA MODEL AND THE METHOD

Let represent a data matrix, composed of rows,
where each row contains independent re-
alizations of a random variable . Next assume that has a
distribution function . In a typical case for
ICA, the rows are called the source signals, and the random
variables are mutually independent.

The standard linear ICA model of a given data matrix
is

(1)

where is an unknown, nonsingular mixing matrix. Thus,
each row of is a linear mixture of the unknown indepen-
dent signals . The goal of independent component analysis

is to estimate the matrix or, equivalently, the demixing ma-
trix or, equivalently, the original source signals .
The following are well known:

1) the separation is unique only up to an unknown scaling
and ordering of the components ;

2) the separation is possible only if at most one of the orig-
inal source variables has a Gaussian distribution.

Since the scale of the source signals cannot be retrieved, one can
assume, without any loss in generality, that the sample variance
of the estimated source signals is equal to one. Thus, instead of
the original source signals , a normalized source signal matrix
denoted can be estimated, where

(2)

(3)

(4)

(5)

where stands for vector of 1’s.

A. Preprocessing

The first step of many variants of the ICA algorithms consists
of removing the sample mean and a whitening (decorrelation
and scaling), i.e., the transformation

(6)

where

(7)

is the sample covariance matrix, and is the sample mean,
. The output contains decorrelated and unit

variance data in the sense that (identity matrix).
Note that can be rewritten using (1) and (2) as

(8)

The ICA problem can be formulated as the one to find a
demixing matrix that separates the original signals from
the mixture , i.e., .

B. FastICA Algorithm for One Unit

The fixed-point algorithm for one-unit estimates one row
of the demixing matrix as a vector that is a sta-
tionary point (minimum or maximum) of the expression

subject to , where
is a suitable nonlinear and nonquadratic function [3]. In

the above expression, is applied elementwise.
Finding proceeds iteratively. Starting with a random ini-

tial unit norm vector , iterate

(9)

(10)

until convergence is achieved. In (9) and also elsewhere in the
paper, in accord with the standard notation [3], and
denote the first and the second derivative of the function .
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The application of and to the vector is elemen-
twise. Classical widely used functions include “pow3,”
i.e., (then the algorithm performs kurtosis mini-
mization), “tanh,” i.e., , and “Gauss,”

.
It is not known in advance which column of is being

estimated: It largely depends on the initialization. Note that the
recursion for some components might not converge. In the defla-
tion method [9], which is not studied in this paper, this problem
is solved by separating the components from the mixture one
by one using orthogonal projections. Here, we shall assume
that each signal component can be separated from the original
signal mixture using suitable initializations. Assume that the
separating vectors computed for all components are appro-
priately sorted [20] and summarized as rows in a matrix denoted

. The rows in may not be mutually orthog-
onal, in general.

C. Symmetric Fastica Algorithm

The symmetric FastICA proceeds similarly, the estimation of
all independent components (or equivalently, of all rows of )
proceeds in parallel, and each step is completed by a symmetric
orthonormalization. Starting with a random unitary matrix ,
iterate

(11)

(12)

until convergence is achieved. The stopping criterion proposed
in [14] is

(13)

for a suitable constant .
The result of the symmetric FastICA (unlike in the one-unit

algorithm without deflation) is a unitary matrix denoted
. As a consequence, sample correlations between

the separated signals are exactly equal to zero.

D. Check of Saddle Points

In general, the global convergence of the symmetric FastICA
is known to be quite good. Nevertheless, if it is run 10 000 times
from random initial demixing matrices, on the average in 1–100
cases, the algorithm gets stuck at solutions that can be recog-
nized by exceptionally low achieved SIR. The rate of these false
solutions depends on the dimension of the model, on the stop-
ping rule, and on the length of the data (see the example at the
end of this subsection).

A detailed investigation of the false solutions showed that
they contain one or more pairs of estimated components, say

, such that they are close to and
, respectively, where is the desired solution

(see Fig. 1). Due to symmetry, the saddle points of the criterion
function lie approximately halfway between two correct solu-
tions that differ in the order of two of their components. Thus,
an appropriate estimate of would be , where

and

Fig. 1. Contrast function
(a) as a function of for , and (b) as a function of for ,
and , respectively; were generated as i.i.d. uniformly distributed
in with the length , and . The
point is a saddle point of the contrast function—it is its local
minimum with regard to and a local maximum with regard to .

A selection between given candidates for a
better estimate of can be done by maximizing the cri-
terion used in the very beginning of derivation of FastICA

where and is a standard normal random vari-
able. In the case of the nonlinearity “tanh,”
and .

Thus, we suggest to complete the plain symmetric FastICA by

the check of all pairs of the estimated independent com-

ponents for a possible improvement via the saddle points. If the
test for saddle point is positive, it is suggested to perform one or
two additional iterations of the original algorithm, starting from
the improved estimate.
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TABLE I
NUMBER OF FAILURES OF SYMMETRIC FASTICA (tanh) AMONG 10 000 TRIALS

The failure rates of the plain symmetric FastICA with three
different stopping rules and of the improved FastICA with the
check of the saddle points are compared in the following ex-
ample. The first stopping rule was (13) with , the
second stopping rule was the same with , and the
third stopping rule required the former condition to be fulfilled
in three consecutive steps. The improved algorithm used the first
stopping rule and the test of the saddle points.

These four variants of the algorithm were applied to sepa-
rate 2, 3, 4, and 5 independent signals with uniform dis-
tribution and varying length in 10 000 independent trials with a
randomly selected initial demixing matrix. The number of al-
gorithmic failures that are detected by the condition that SIR of
some of the separated components is smaller than 3 dB is dis-
played in Table I. The table shows zero rate of the improved al-
gorithm except for the case of the data with the shortest length,

200. In the latest case, the rate of failures has significantly
dropped compared to the former three variants.

E. Measure of the Separation Quality

The separation ability of ICA algorithms can be character-
ized by the relative presence of the th source signal in the es-
timated th source signal. It is possible, if the source signals are
known. Due to the permutation and sign/phase uncertainty, the
estimated sources need to be appropriately sorted to fit the orig-
inal ones. In this paper, the method proposed in [20] is used.
Formally, the estimated source signals can be written using (8)
as

(14)

where and stands either for
or for . Note that has the meaning of the

estimated demixing matrix provided that . It will be
called the gain matrix for brevity.

The relative presence of the th source signal in the estimated
th source signal is represented by the th element of ,

denoted . Then, the total SIR of the th source signal is
defined as follows:

SIR (15)

It is important to note that the estimator is invariant with
respect to orthogonal transformations of the decorrelated data

, or equivariant [10]. It is because the recursions (9) and (10)
or (11) and (12) that represent the algorithm are equivalent to the
same relations with , and replaced by ,
and , respectively, where is an arbitrary unitary (i.e.,
obeying ) matrix. Then, the product

remains independent of . From these facts, it follows that the
gain matrix and consequently the SIR are independent of the
mixing matrix .1

III. ANALYSIS

Due to the above-mentioned equivariant property of FastICA
it can be assumed, without any loss in generality, that the recur-
sions (9) and (10) or (11) and (12) begin with the decorrelated
data of the form

(16)

where

(17)

The gain matrix of interest is now

(18)

Note that the gain matrix (and consequently the SIR as well)
is a function of the normalized source signals and of the non-
linear function used in the algorithm only.

The main result of this section can be summarized as follows.
Proposition 1: Assume that 1) all original independent com-

ponents have zero mean and unit variance and are temporarily
white, 2) the function in algorithm FastICA is twice continu-
ously differentiable, 3) the following expectations exist:

(19)

(20)

(21)

1To be exact, a change of the mixing matrix (or a change in the algorithm
initialization) may cause a change of the order or sign of the components at
the algorithm output. Here, however, we assume that the order and signs of the
components are post-processed to fit the original signals [20].
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TABLE II
SIR (IN DECIBELS] OF FastICA IN ITS MAIN SIX VARIANTS FOR TWO COMPONENTS WITH THE SAME DISTRIBUTION, AND THE

CRAMÉR–RAO BOUND (DERIVED IN SECTION IV) FOR 1000. THE BEST SIR IS MARKED BY BOLD CHARACTERS

for , and 4) the FastICA algorithm (in both variants)
is started from the correct demixing matrix and stops after a
single iteration.

Then, the normalized gain matrix elements and
for the one-unit FastICA and for symmetric Fas-

tICA, respectively, have asymptotically Gaussian distribution
and , where

(22)

(23)

for , provided that the denominators are
nonzero.

Proof: See Appendix A. An expression similar to (22) can
be found in [10] and [17], but (23) is novel.

The assumption 4 may look peculiar at the first glance, but
it is not so restrictive as it seems to be. It reflects the fact that
the presented analysis is “local” and assumes a “good” initial-
ization of the algorithm. The algorithm itself may have good
global convergence properties (see Section VI), but it is not a
subject of this proposition. Once the algorithm is started from
an initial that lies in a right domain of attraction, the resultant
stationary point of the recursion, denoted , is the same and is
approximately equal to obtained after one step from the
ideal solution, due to the fact that the convergence is quadratic.2

Our numerical simulations presented in Section VII, and also
other simulations that were skipped for lack of space, confirm
the validity of the asymptotic variances (22) and (23) for the al-
gorithm variant introduced in Section VI working with arbitrary
(random) initialization. Namely, it is shown that

and . The expressions
in (22) and (23) are functions of the probability distribution of

and of the nonlinear function via the expectations in
(19)–(21). Given the distribution and the nonlinearity, these ex-
pressions can be evaluated.

2The quadratic convergence means that if the initial difference between the
initial and is , the distance of (that is after one iteration)
is .

Table II shows the theoretical SIR of the main six variants of
FastICA for separation of two components with the same distri-
bution, computed for a few distributions considered frequently
in the literature, for sample size 1000. Here, the distri-
bution “sinus” means the distribution of sin , where is
uniformly distributed in , “bpsk” is the discrete distribu-
tion with values , both with the probability 0.5, and
means the generalized Gaussian distribution with parameter ,
described in Appendix F. Note that the latter distribution is stan-
dard Gaussian for , the Laplace distribution for ,
sub-Gaussian for , approaching the uniform distribution
for , and super-Gaussian (spiky) for .

Note that for separation of components, the SIR would
be dB lower than in the table, and if is increased/de-
creased ten times, the resultant theoretical SIR is increased/de-
creased by 10 dB compared with the table.

A. Example of Utilization

In this subsection, the previous analysis is used to de-
rive a novel variant of the FastICA algorithm, which com-
bines advantages of both previously discussed variants.
For easy reference, it will be called “Smart FastICA.”
This algorithm begins with applying symmetric FastICA
with nonlinearity “tanh.” For each estimated component
signal , parameters , and are computed as
sample estimates of the expectations in (19)–(21), namely

,
and then they are plugged in (22) and (23) and (15), namely

SIR

SIR

If the obtained SIR for the one-unit algorithm is better than
for the former estimate, the algorithm is performed, taking ad-
vantage of a more suitable nonlinearity for each of particular
cases: In the super-Gaussian case, defined by the condition

, the option “Gauss” is selected, and in the sub-Gaussian case
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with , “pow3” is applied (see the simulation section for
a reason).

Then, , and SIR are computed again. If the new
SIR is better than the previous one and if, at the same time, the
scalar product between the former separating vector and the new
one is higher in absolute value than a constant (we have used
0.75), then the one-unit refinement is accepted in favor of the
former vector. The condition on the scalar product is intended
to eliminate the cases where the one-unit algorithm converged
to a wrong component. A further optimization of the algorithm
exceeds the scope of the paper [33].

B. Optimum Nonlinearity

It is interesting to know, which function would be op-
timal for given probability density function (pdf) of . If all
source signals have the same distribution, the answer is well
known. It is the so-called score function of the distribution, de-
fined as , where is the underlying
pdf. Introduce the notation

(24)

where is a random variable with the pdf . Note that if has
zero mean and variance one, it holds , where the equality
is attained if and only if the underlying distribution is standard
Gaussian (see Appendix E). Thus, represents a measure of
non-Gaussianity.

For the optimum nonlinearity , a straightfor-
ward computation gives and , and conse-
quently

(25)

(26)

IV. CRAMÉR–RAO LOWER BOUND FOR ICA

Consider a vector of parameters being estimated from a data
vector , having probability density , using some un-
biased estimator . The CRB is the lower bound for the variance
of . Assume that is smooth and the following Fisher in-
formation matrix exists:

(27)

Then, under some mild regularity condition,[18],3 it holds

CRB

Next, if is a differentiable function of , then the
Fisher information matrix for exists as well and is equal to

(28)

31) Support of is independent of ; 2) exists for all
from an open set; and 3)

where is the Jacobian of the mapping . If the mapping is
linear, or for some regular matrix , then

.
In the context of ICA, we first focus on deriving the CRB for

estimation of the demixing matrix , i.e., the param-
eter vector is .

The following assumptions will be considered throughout this
section:

(29)

(30)

(31)

where and denotes the score function of the cor-
responding pdf, i.e., is assumed
to have zero mean for all , and for all and .

A. Fisher Information Matrix

From the independence of the original signals, it follows that
their joint pdf is . Then, using the
transformation

(32)

Incorporating this density into (27), the th element of the
Fisher information matrix , where

, and denotes the th element of the
matrix , is

(33)

A straightforward computation (see Appendix C) gives

(34)

with defined in (30) and (31), is the Kronecker’s delta,
and denotes the th element of the mixing matrix . It can
be shown, using (28), that

(35)

where stands for the Fisher information matrix derived for
a case when (identity matrix); denotes the Kronecker
product. Substituting into (34), it easily follows that

(36)

Some properties of the matrix will be shown in Appendix D.

B. Accuracy of the Estimation of

Let denote an estimator of the demixing matrix . Es-
timated signals are then . It is inter-
esting to compute the CRB for the elements of the gain ma-
trix , which is closely related to the gain matrix



TICHAVSKÝ et al.: PERFORMANCE ANALYSIS OF THE FastICA ALGORITHM AND CRBs FOR LINEAR ICA 1195

defined in (14). A comparison of the definition relations gives
, where contains, on its diagonal, sample vari-

ances of the original independent signal components. Asymp-
totically, converges to unity matrix, and hence any estimate
of is at the same time an estimate of , and vice versa.
In addition, it follows from the analysis in Appendix A that the
asymptotic distribution of nondiagonal elements of and those
of is the same.

To compute the CRB for , note that the new parameter
vector is just a linear function of the parameter

, i.e., . Then,
using (28), the Fisher information matrix of is

(37)

Note that is independent of the mixing matrix . The CRB
for the th element of is

CRB

where and . In Appendix D, it is proved
that for such

(38)

which gives us the desired lower bound

CRB (39)

The diagonal elements of are not as important, they just
reflect the accuracy of estimating the power of the components,
or equivalently, the norm of rows of the demixing matrix.

V. DISCUSSION

A. Comparison of CRB With Performance of
FastICA With Optimum

The Cramér–Rao lower bound in (39) is compared with the
asymptotic variance of FastICA in (25) and (26) in Fig. 2. We
can see that for close to 1, the CRB is close to the variance
of the symmetric FastICA with the optimum nonlinearity. In
this case, however, the estimation may fail, because the variance
of the estimator itself goes to infinity, and convergence of the
algorithm may be slow.

In the opposite case, for , the CRB asymptotically
coincides with the variance of the one-unit FastICA with the
optimum nonlinearity, because

-

CRB

-

CRB
for

We conclude that the FastICA algorithm with the optimum non-
linearity is asymptotically efficient in two cases: 1) one-unit ver-
sion for and 2) symmetric version for provided
that all components have the same distribution law.

B. Separation of Sources With the
Generalized Gaussian Distribution

Properties of the generalized Gaussian distribution are listed
for easy reference in Appendix F. Note that the score func-

Fig. 2. Asymptotic performance of one-unit and symmetric FastICA and the
CRB versus parameter .

tion of this distribution is proportional to so that
is the theoretically optimum nonlinearity

for the distribution. However, only for is this function
continuous and hence suitable nonlinearity for FastICA. For dis-
continuous ’s, the algorithm appears not to converge.

C. Distributions With Finite Support

The CRB does not exist (the bound is infinite) for the
bounded magnitude distributions such as “uniform,” “sinus,”
and “bpsk” in Table II. It happens because these distributions do
not have infinite support, as required for existence of the CRB.
Since the uniform distribution is a limit of the GGD for
going to infinity, it is natural to study FastICA with nonlinearity

with large . It can be easily shown that
the one-unit FastICA with this nonlinearity has asymptotic
variance that goes to zero for .
Similar results can be obtained for the distribution “sinus.” In
other words, the asymptotic variance of FastICA cannot be
lower bounded by any bound of the form . Implications of
the above observation for an adaptive choice of the nonlinearity
exceed the scope of this paper.

D. Distributions With Long Tails

The CRB does not exists for the GGD distribution
with parameter (cf. lines 7 and 8 in Table II).
These distributions are sometimes called “long tailed”.
Instead of the score function, let us consider the nonlin-
earity . This choice has the
advantage, that the asymptotic variance of FastICA with
this nolinearity can be computed analytically. The result is

for large and , with
defined in (93). Again, goes to zero for

and all . This explains nonexistence of the CRB
in this case. Design of an FastICA-based algorithm tailored for
long-tailed distributions exceeds the scope of this paper.
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Fig. 3. Performance of (a) one-unit FastICA and (b) symmetric FastICA in
separating signals with distribution as a function of .

VI. NUMERICAL RESULTS

Example 1: Four independent random signals with gener-
alized Gaussian distribution (see Appendix C) with parameter

and length 5000 were generated in 100 independent
trials. The signals were mixed with a matrix that was randomly
generated in each trial, and demixed again by eight variants of
the algorithm: the symmetric FastICA with nonlinearities tanh,
Gauss, pow3, and with the score function (dependent on ), as
well as the one-unit FastICA with the same nonlinearities, im-
plemented like smart FastICA. The resulting theoretical and em-
pirical SIR is plotted in Fig. 3(a) and (b). An erratic behavior of
the empirical results is experienced for small and nonlinearity
pow3. Here, the convergence of sample estimates of the expres-
sions in (19)–(21) to their expectations is slow. We can see that
among the -independent nonlinearities, the “pow3” performs
best in the case of that corresponds to the sub-Gaussian

Fig. 4. Relative efficiency of (a) one-unit FastICA and (b) symmetric FastICA.

case, and “gauss” is the best one for where the distri-
bution is super-Gaussian. FastICA with equal to the score
function does not work properly (does not converge at all) for

, because the score function is not continuous for these
’s.
Fig. 4 is similar, showing the relative efficiency of the eight

methods compared with the corresponding CRB.
Example 2: In the second experiment, we have generated

three different components with Gaussian, GG , and Laplace
distribution of the fixed length 5000 in 100 independent
trials for each . Signals were randomly mixed and separated
by the symmetric FastICA and Smart FastICA with nonlinearity
tanh. The resultant SIRs are shown in Fig. 5. Note that this ex-
ample includes the situation where the mixture includes two
Gaussian distributions for . The empirical and theoret-
ical SIR are shown to agree very well. The Smart FastICA out-
performs the symmetric version for such when the one-unit
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Fig. 5. Performance of symmetric FastICA and smart FastICA separating
three different components using “tanh” nonlinearity.

Fig. 6. Comparison of CRB with performance of four ICA techniques.

approach has better variance than the symmetric one, and gives
the same result otherwise.

Example 3: In the last experiment, we studied performance
of two computationally extensive algorithms that are claimed to
be more accurate than older algorithms: RADICAL [22] and
NPICA [23]. We tested implementations available on the In-
ternet and compared their performance with the CRB. The simu-
lations are obtained from 50 independent separations of a signal
of length 1000 with components, all having the
same distribution function, GGD (see Fig. 6). In the neigh-
borhood of the point , the symmetric FastICA appears to
outperform the other techniques. In general, it appears to give
stable results unlike the NPICA.

VII. CONCLUSION

In this paper, 1) a novel technique to improve stability of Fas-
tICA is proposed, 2) novel analytical expressions are derived

for the variance of gain matrix elements for one-unit and sym-
metric FastICA, with an arbitrary twice differentiable nonlinear
function and arbitrary probability distribution with finite vari-
ance of the independent components in the linear mixture, and
3) the Cramér–Rao bound for the above ICA problem is com-
puted. The CRB does not exist for sources with bounded magni-
tude and for sources with long-tailed distribution. It was shown
that asymptotic variance of estimates produced by FastICA with
properly selected nonlinearity can approach the CRB, if the
CRB exists, or approach zero, if the CRB does not exist. Good
general performance of this popular algorithm is confirmed and
possibilities of its further improvements are indicated.

Computer simulations confirm very well the validity of the
theoretical predictions.

APPENDIX A
PROOF OF PROPOSITION 1

A. Preliminaries

Invoking assumption (1) of the proposition, and the weak law
of large numbers it follows that the sample variance of de-
fined in (4) converges to 1 in probability for going to infinity,
symbolically , or , where is the
stochastic order symbol (see, e.g., Appendix C in [31]). Simi-
larly, thanks to the assumption (3)

(40)

(41)

In addition, due to the mutual independence of components, it
holds for

(42)

where denotes the elementwise product. It can be shown,
that the same limits are obtained if in (40)–(42) are re-
placed by the normalized components , where is the

th column of . Note from (2) that
, consequently

, and

(43)

Similarly, it can be shown that

(44)

(45)

Moreover, using the asymptotic expression for , to be derived
in the next subsection, it can be shown that the relations (40) and
(41) hold true as well, if is replaced with , that is defined
as the th column of

(46)

(47)
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B. Asymptotic Behavior of

As goes to infinity, the matrix defined in (17) approaches
identity matrix in the mean square sense. To see this, note that
the diagonal elements of are equal to one by definition, and
that the off-diagonal elements with have zero mean.
Due to assumed independence of and , it holds

(48)

where . Let . Since all elements
of have the same distribution, the diagonal elements of
have all the same value

(49)

for . The off-diagonal elements have all the same
value as well

(50)

for . Combining (48), (49), and (50) gives

(51)

(52)

It follows from (52) that

(53)

where denotes a standard stochastic order symbol, or a
matrix of stochastic order symbols of appropriate dimension.
Using Lemma 1 in Appendix B, it can be derived that

(54)

C. Approximation for

Obviously, and

(55)

A Taylor series expansion of function in a neighborhood
of gives

(56)

where denotes the elementwise product and

(57)

Using (17), the th column of is

(58)

D. Approximation for

Inserting in (11), the th element of reads

for
for

(59)

For , we get using (46) and (47)

(60)

For , we get using (56)

(61)

The reminder term in (61) has the stochastic order for the
following reason. It holds that , and the remainder
in the expansion of , that is , are -element vec-
tors. The stochastic order notation is valid uniformly over ele-
ments of these vectors. Hence, scalar product of these two vec-
tors is . Similarly,

, and .
In the following, let and stand for and ,

respectively, . Note that, due to (21) and due to
independence of for , it holds

(62)

It follows from (19) and (62) that

(63)

Similarly

(64)
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Applying (63) and (64) and (43)–(45) in (61) gives

(65)

E. Approximation for

Note that if for some , the th diagonal element
of the demixing matrices and may have the wrong
sign, i.e., it might be close to instead of 1. It corresponds to
reversed sign of the th estimated independent component. In
the one-unit version of the algorithm, the sign can be corrected
by replacing the normalization in (10) by an equivalent formula

(66)

Similarly, using Lemma 2 in Appendix B, the asymptotically
equivalent sign corrected expression for the estimated demixing
matrix is

(67)

For both estimator variants, and we can write

(68)

Since

(69)

the gain matrix off-diagonal elements read

(70)

For the one-unit variant, we get

(71)

Finally, we show that (71) can be rewritten in terms of in
an asymptotically equivalent formula

(72)

To see that, note that

(73)

Similarly, it can be shown that

(74)

Equation (74) concludes the proof of (72). Now, applying the
central limit theorem to (72) implies that the distribution of

is asymptotic normal with zero mean and variance
equal to the variance of the leading term in (72). Using (62)–(64)
gives

(75)

Similarly, for symmetric FastICA, it holds using (67) that

(76)

The variance of the leading term in (76) results, after some al-
gebra using (63)–(65), in

(77)

as desired.

APPENDIX B
LEMMAS

Lemma 1: Let and be positive definite matrices of the
same dimension and . Then, for (in
any matrix norm), it holds

(78)
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where

(79)

Here, “vec” denotes the operation that reshapes columns of a
matrix in one long column vector, and “unvec” is the corre-
sponding inverse operation.

In the case that is diagonal, is a
diagonal matrix with for , then has
elements

(80)

In the case that , (80) gives .
Proof: The identity

(81)

leads, after neglecting higher than first-order terms in and
, to the relation

(82)

or, equivalently

The desired solution (79) follows.
Lemma 2: Let

(83)

where is a diagonal matrix, and let
for . Then, for it holds

(84)

where has elements

(85)

Proof: Using Lemma 1 gives

(86)

where

(87)

and has as elements

(88)

Then

(89)

and hence the leading term has elements

APPENDIX C
COMPUTING FISHER INFORMATION MATRIX

Applying the fact that , we
get from (32)

Next

Returning to the above formula, we get

From (1), it follows that , and consequently
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Using this, we can directly compute the th entry of the Fisher
information matrix.

The second and the third term are equal to , because
. To simplify the last term,

we shall consider two cases:

1) , then

2) , then

Here, denotes a random variable with pdf , and denotes
its score function, i.e., . After a few
simplifications, (34) follows.

APPENDIX D
COMPUTING MATRIX INVERSION OF

Definition (36) can be rewritten as
, where th element of and are ,

and , respectively, for
and . Note that is a rank-one

matrix, , where . Applying the matrix
inversion lemma gives

To compute the inversion , note that is diagonal

(90)

and is a special permutation matrix such that
for any matrix . Moreover, obeys ,

and for any diagonal matrix it holds that

where . These facts can be used to
show that the inversion of can be written in the form

for suitable diagonal matrices and . The equality

is fulfilled for and . Hence

and

where and . Finally, it can be shown
that mm mm for .
(38) easily follows.

APPENDIX E
PROOF THAT

Assume that is a positive probability density function
of a random variable with zero mean and variance 1, such
that in (24) exists. Then, integration per partes and the
Cauchy–Schwartz inequality gives

(91)

The equality in (91) is attained if is proportional to ,
which necessarily means that that the distribution is Gaussian.

APPENDIX F
GENERALIZED GAUSSIAN DISTRIBUTION FAMILY

Consider the generalized Gaussian density function with pa-
rameter , zero mean and variance one, as [19]

(92)
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where is a positive parameter that controls the distribu-
tion’s exponential rate of decay, is the Gamma function,
and

(93)

This generalized Gaussian family encompasses the ordinary
standard normal distribution for , the Laplacean dis-
tribution for , and the uniform distribution in the limit

.
The th absolute moment for the distribution is

(94)

The score function of the distribution is

(95)

Then, simple computations give

for

otherwise
(96)
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