ECE 594D

Robot Locomotion Winter 2010

Cart-pole system: Equations of motion

Nonlinear Dynamics

This document provides a derivation of the equations of motion (EOM) for the cart-pole system. The
(true) nonlinear dynamic equations are derived first, using a Lagrangian approach; then the system is lin-
earized about the upright equilibrium (“inverted pendulum”) position. Figure 1 shows the system. There
are two degrees of freedom: the position of the cart, z, and the angle of the pendulum, #. The system is
underactuated, since there is only one actuation: a force, F)., applied on the cart.

To begin, we will derive the simple relationships giving the position and velocity of the pendulum:
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Figure 1: Cart-pole system.

x, = —Lsinf (D)
Tp = —Lcoshl + i 2)
yp = L cos0 3)
4, = —Lsin 04 4)
The “Lagrangian” for a dynamic system is defined as:
L=T"-V (5)
where 7™ is the kinetic energy and V' is the potential energy. For the cart-pole system:
S B 1 . .
T = §Mx2 + 5y (@2 +97)
1 1 . . )
= §M:t2 + 5 <<L2 cos® 06? — 2L cos 00 + :icQ) + (L2 sin? 6’92>>
1 o 1 2 2002 2 i 2 )2 . ©)
= §(M—|—mp)a: + 5y (L cos” 007 + L* sin” 00 ) — my,L cos 001
1 1 . .
=3 (M +m,) i* + §mpL292 — m,L cos 001
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And the potential energy is:

V = mpay, o
= mpgL cos 0
So the Lagrangian is:
1 P 242 )
== my) T> + —m — my,L cos 001 — mgL cos
L 2(M+ p)p+2 »L70 »L cos 66 Lcosf (8)

Next, for each generalized coordinate, ¢, and its associated actuating force (if any), =,,, we can derive
an equation of motion:

d oL dL _

o @ " )

For the = coordinate of the cart:
E,=F; (10)
g—g = (M—l—mp)jv—mchoseé (11)
%?}_i = (M +my) &, + m,Lsin 00% — myL cos 00 (12)

oL
S0 (13)

Combining these expressions as required by Equation 8, we obtain one equation of motion:
Fy = (M +m,) i + myLsin 06> — m,Lcosff (14)

For the (unactuated) angle of the pendulum, 6,

Z9=0 (15)
a—ﬁ. = m,L*0 — m, L cos 0i, (16)
00
%g—g = mpL2é — myL cos 02 + my, L sin Qéx'p 17
oL e .
20 = my, L sin 00z + mpgL sin 0 (18)

Again using Equation 8, we get the second equation of motion:

0 = m, L% — m, L cos 0% + m, L sin 89, — m, L sin 003 — m,gL sin (19)
= m,L*6 — m,L cos 0 — m,gL sin 6
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Linearization

Assuming the pendulum remains near ¢ = 0, we can linearize the equations of motion given in 14 and
19. For the linearization, we assume:

sinf ~ 0
cosf ~ 1
0> ~ 0
Equation 14 can then be approximated as:
E, = (M +my)i —m,Lb (20)
and equation 19 becomes: )
0= —m,Li + m,L*0 — m,gL0 (1)

Decoupling the equations of motion

It is trivial to rewrite the dynamics represented by 20 and 21 to give the following two (explicit) expres-
sions for the accelerations of the state variables of the linearized system:

s M +m,, g 1

9_( M )LGJF(ML)Fm (22)
.. m 1

i = (7)o + (M) E, (23)

After a bit of mathematical gymnastics, we can also rewrite the two nonlinear equations of motion (14
and 19) to express each acceleration explicitly:

—sinfm, L cos 062 + sin OgM + sin Omy,g + cos O F,

6 =
L (—mycos? 0+ M +m,) 24)
—m,Lsin @ cos 8% + (M +m,) gsinf + cos OF,
B (M +my, (1 —cos?6)) L
—sinfm,LH? + sin Om,, cos Og + F,
xr =
—mycos? 0 + M + m, 25)

—m,Lsin 0% + m,gsin cos 0 + F,
B M +m, (1 — cos?0)
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