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Cart-pole system: Equations of motion

Nonlinear Dynamics
This document provides a derivation of the equations of motion (EOM) for the cart-pole system. The
(true) nonlinear dynamic equations are derived first, using a Lagrangian approach; then the system is lin-
earized about the upright equilibrium (“inverted pendulum”) position. Figure 1 shows the system. There
are two degrees of freedom: the position of the cart, x, and the angle of the pendulum, θ. The system is
underactuated, since there is only one actuation: a force, Fx, applied on the cart.
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Figure 1: Cart-pole system.

To begin, we will derive the simple relationships giving the position and velocity of the pendulum:

xp = −L sin θ (1)

ẋp = −L cos θθ̇ + ẋ (2)
yp = L cos θ (3)

ẏp = −L sin θθ̇ (4)

The “Lagrangian” for a dynamic system is defined as:

L = T ∗ − V (5)

where T ∗ is the kinetic energy and V is the potential energy. For the cart-pole system:
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And the potential energy is:

V = mpgyp

= mpgL cos θ
(7)

So the Lagrangian is:

L =
1

2
(M + mp) ẋ2

p +
1

2
mpL

2θ̇2 −mpL cos θθ̇ẋ−mgL cos θ (8)

Next, for each generalized coordinate, qn, and its associated actuating force (if any), Ξn, we can derive
an equation of motion:

d

dt

∂L
∂q̇n

− dL
qn

= Ξn (9)

For the x coordinate of the cart:

Ξn = Fx (10)
∂L
∂ẋ

= (M + mp) ẋ−mpL cos θθ̇ (11)

d

dt

∂L
∂ẋ

= (M + mp) ẍp + mpL sin θθ̇2 −mpL cos θθ̈ (12)

∂L
∂x

= 0 (13)

Combining these expressions as required by Equation 8, we obtain one equation of motion:

Fx = (M + mp) ẍ + mpL sin θθ̇2 −mpLcosθθ̇ (14)

For the (unactuated) angle of the pendulum, θp,

Ξθ = 0 (15)
∂L
∂θ̇

= mpL
2θ̇ −mpL cos θẋp (16)

d

dt

∂L
∂θ̇

= mpL
2θ̈ −mpL cos θẍ + mpL sin θθ̇ẋp (17)

∂L
∂θ

= mpL sin θθ̇ẋ + mpgL sin θ (18)

Again using Equation 8, we get the second equation of motion:

0 = mpL
2θ̈ −mpL cos θẍ + mpL sin θθ̇ẋp −mpL sin θθ̇ẋ−mpgL sin θ

= mpL
2θ̈ −mpL cos θẍ−mpgL sin θ

(19)
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Linearization
Assuming the pendulum remains near θ = 0, we can linearize the equations of motion given in 14 and
19. For the linearization, we assume:

sin θ ≈ θ

cos θ ≈ 1

θ̇2 ≈ 0

Equation 14 can then be approximated as:

Fx = (M + mp) ẍ−mpLθ̈ (20)

and equation 19 becomes:
0 = −mpLẍ + mpL

2θ̈ −mpgLθ (21)

Decoupling the equations of motion
It is trivial to rewrite the dynamics represented by 20 and 21 to give the following two (explicit) expres-
sions for the accelerations of the state variables of the linearized system:
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Fx (22)
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(mp
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)
gθ +
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M

)
Fx (23)

After a bit of mathematical gymnastics, we can also rewrite the two nonlinear equations of motion (14
and 19) to express each acceleration explicitly:

θ̈ =
−sinθmpL cos θθ̇2 + sin θgM + sin θmpg + cos θFx

L (−mp cos2 θ + M + mp)

=
−mpL sin θ cos θθ̇2 + (M + mp) g sin θ + cos θFx

(M + mp (1− cos2 θ)) L

(24)

ẍ =
−sinθmpLθ̇2 + sin θmp cos θg + Fx

−mpcos2 θ + M + mp

=
−mpL sin θθ̇2 + mpg sin θ cos θ + Fx

M + mp (1− cos2 θ)

(25)
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